Acta Cryst. (1995). C51, 628-629

Isotypie Entre les Structures Cristallines des Tétrachlorocuprate(II) et Tétrachloropalladate(II) de *S*,*S*'-(Octane-1,8-diyle)bis(thiouronium)

BERNARD VIOSSAT

Laboratoire de Chimie Générale, UFR de Médecine et de Pharmacie, Université de Poitiers, 34 Rue du Jardin des Plantes, 86034 Poitiers CEDEX, France

NGUYEN-HUY DUNG ET NÖEL RODIER

Laboratoire de Chimie Physique, Minérale et Bioinorganique, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Paris XI, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

(Reçu le 24 décembre 1993, accepté le 27 juin 1994)

Abstract

The unit cell of S,S'-(1,8-octanediyl)bis(thiouronium) tetrachloropalladate(II), (C₁₀H₂₄N₄S₂)[PdCl₄], contains one BTUO²⁺ cation, where BTUO²⁺ is the diprotonated form of the organic ligand 1,8-octanediylbis(thiourea), and one square-planar PdCl₄²⁻ anion. The cation, which possesses an inversion centre, exhibits quasi-planar packing and an extended all-*trans* configuration. This compound is isotypic with (C₁₀H₂₄N₄S₂)[CuCl₄].

Commentaire

La détermination de la structure cristalline du tétrachloropalladate(II) de S,S'-(octane-1,8-diyle)bis-(thiouronium) (en abrégé BTUO, PdCl₄) a été entreprise dans le cadre de l'étude des sels de S,S'-(alcane- α, ω -diyle)bis(thiouronium). Elle fait suite à celles du tétrachlorocuprate(II) (Viossat, Nguyen-Huy & Lancelot, 1994) et du tétrachloroplatinate(II) (Nguyen-Huy, Viossat & Lancelot, 1994) du même cation.

L'atome de palladium est centre de symétrie et possède une coordination de type plan-carré. Le cation bis protoné $BTUO^{2+}$ présente également un centre d'inversion. Sa configuration est tout *trans* et sa chaîne alkylée est quasi-plane. Cette structure est isotype du tétrachlorocuprate(II) de $BTUO^{2+}$

(Viossat *et al.*, 1994). Cette isotypie ne s'observe pas avec le tétrachloroplatinate(II) de BTUO²⁺ car le remplacement du cuivre(II) par le platine(II) induit un changement de configuration de la chaîne carbonée (Nguyen-Huy *et al.*, 1994). On observe, dans ce cas, la séquence d'empilement mixte *trans* (*t*)gauche (g) (tgtttttgt). Des modifications de ce type ont été décrites par Kind *et al.* (1979) dans la structure du tétrachlorocadmiate de bis *n*décylammonium.

Fig. 1. Vue en perspective de la maille et numéros attribués aux atomes. [Codes de symétrie: (i) 1 - x, 1 - y, 1 - z; (ii) -x, -y, -z.]

Partie expérimentale

Le produit étudié a été obtenu par chauffage d'une solution chlorhydrique molaire d'un mélange du tétrachloropalladate de potassium $(2 \times 10^{-2} \text{ mol } 1^{-1})$ et du composé organique $(4 \times 10^{-2} \text{ mol } 1^{-1})$. Le filtrat est mis à évaporer. La masse volumique a été mesurée par flottaison.

Données cristallines

 $(C_{10}H_{24}N_4S_2)[PdCl_4]$ Mo $K\alpha$ radiation $M_r = 512,67$ $\lambda = 0.7107 \text{ Å}$ Triclinique Paramètres de la maille à $P\overline{1}$ l'aide de 25 réflexions a = 7.799 (1) Å $\theta = 7.47 - 14.34^{\circ}$ $\mu = 1,705 \text{ mm}^{-1}$ b = 8,132 (2) Å c = 8,823 (1) Å T = 293 K $\alpha = 99,48 (1)^{\circ}$ Aiguille $\beta = 93,84(1)^{\circ}$ $0.35 \times 0.12 \times 0.08$ mm $\gamma = 117.02 (2)^{\circ}$ Jaune orangé V = 485,3 (3) Å³ Z = 1 $D_x = 1,75 \text{ Mg m}^{-3}$ $D_m = 1,76 \ Mg \ m^{-3}$

> Acta Crystallographica Section C ISSN 0108-2701 ©1995

Diffractomètre Enraf-Nonius
CAD-4
Balayage $\theta - 2\theta$
Pas de correction
d'absorption
1897 réflexions mesurées
1897 réflexions
indépendantes
1654 réflexions observées
$[I > 3\sigma(I)]$

Affinement

$\Delta \rho_{\rm max} = 0.39$ (7) e Å ⁻³
$\Delta \rho_{\rm min} = -0,44$ (7) e Å ⁻³
Correction d'extinction:
Stout & Jensen (1968)
Coefficient d'extinction:
3,5 (4) $\times 10^{-7}$
Facteurs de diffusion des
International Tables for
X-ray Crystallography
(1974, Tome IV)

 $\theta_{\rm max} = 26^{\circ}$

 $h = -9 \rightarrow 8$

 $\begin{array}{l} k = 0 \rightarrow 10 \\ l = -10 \rightarrow 10 \end{array}$

3 réflexions de référence

fréquence: 120 min

décroissance)

variation d'intensité:

4.4% (correction de

Tableau 1. Coordonnées atomiques et facteurs d'agitationthermique isotrope équivalents (Ų)

$$U_{\text{éq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	Uéa
Pd	0	0	0	0,02983 (6)
Cl(1)	0,2450(1)	0,30511 (9)	0,0112(1)	0,0406 (2)
Cl(2)	0,2165(1)	-0,0591 (1)	0,1419(1)	0,0458 (2)
S	0,1129(1)	-0,2365 (1)	0,6690(1)	0,0503 (2)
N(12)	0,0308 (4)	-0,5200(4)	0,7977 (4)	0,0603 (8)
N(13)	0,3553 (4)	-0,3116 (4)	0,8402 (3)	0,0480 (6)
C(1)	0,3310 (4)	-0,0129 (4)	0,6940 (4)	0,0397 (6)
C(2)	0,2807 (4)	0,1039 (4)	0,5984 (4)	0,0410 (6)
C(3)	0,4584 (4)	0,2920 (4)	0,6012 (4)	0,0413 (8)
C(4)	0,4111 (4)	0,4062 (4)	0,5000 (4)	0,0400 (6)
C(11)	0,1764 (4)	-0,3625 (4)	0,7807 (4)	0,0407 (6)

Tableau 2. Distances interatomiques (Å), angles des liaisons (°) et angles de torsion (°), longueurs et angles des liaisons hydrogène (Å, °)

	-	0 1					
PdCl(1)	2,3246 (6)	N(13)—C(11)	1,304 (4)				
PdCl(2)	2,3029 (9)	C(1)—C(2)	1,525 (5)				
S-C(1)	1,804 (2)	C(2)C(3)	1,522 (4)				
S-C(11)	1,731 (4)	C(3)C(4)	1,528 (5)				
N(12)—C(11)	1,310(4)	C(4)C(4 ⁱ)	1,526 (4)				
Cl(1)-PdCl(2)	90,04 (3)	C(3)C(4)C(4 ⁱ)	112,3 (3)				
C(1)—S—C(11)	104,8(1)	SC(11)N(12)	115,1 (3)				
SC(1)C(2)	106,6(2)	S-C(11)-N(13)	123,7 (2)				
C(1)C(2)C(3)	111,5 (3)	N(12)C(11)N(13) 121,2 (4)				
C(2)—C(3)—C(4)	111,8 (3)						
C(11)—S—C(1)—C(2)	-179,5 (2)	SC(1)C(2)C	(3) - 176,0(2)				
C(1) - S - C(11) - N(12)	170,5 (3)	C(1)C(2)C(3)-	C(4) 177,6(3)				
C(1) - S - C(11) - N(13)	-11,9 (3)	C(2)C(3)C(4)-	C(4 ⁱ) -179,2 (3)				
D—H···A		$D \cdots A$	$D = H \cdots A$				
$N(12) - H(12) \cdot \cdot \cdot Cl(1^{\vee})$	3	3,314 (4)	151				
N(13) - H(13') - Cl(1'')	3	3.274 (3)	115				
$N(12) - H(12) \cdot \cdot \cdot Cl(2^{iv})$	3	3.234 (3)	124				
$N(13)$ - $H(13)$ ··· $Cl(2^{iii})$	3	3,300 (2)	166				
Codes de symétrie: (i	1 - x, 1 - x	-y, 1 - z; (iii) 1	-x, -y, 1-z;				
(iv) - x, -1 - y, 1 - z; (v) x, y - 1, 1 + z.							

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved La structure a été résolue par la méthode de l'atome lourd et la Fig. 1 réalisée avec le programme *ORTEPII* (Johnson, 1976). Tous les programmes utilisés appartiennent au système *SDP* (B. A. Frenz & Associates, Inc., 1982).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances des atomes d'hydrogène et des plans moyens ont été déposées au dépôt d'archives de l'UICr (Référence: PA1105). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, EU.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Kind, R., Plesko, S., Arend, H., Blinc, R., Zeks, B., Seliger, J., Lozar, B., Slak, J., Levstik, A., Filipic, C., Zagar, V., Lahajnar, G., Milia, F. & Chapuis, G. (1979). J. Chem. Phys. 71, 2118– 2130.
- Nguyen-Huy, D., Viossat, B. & Lancelot, J. C. (1994). Acta Cryst. C50, 1434-1437.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, pp. 410-412. Londres: MacMillan.
- Viossat, B., Nguyen-Huy, D. & Lancelot, J. C. (1994). Acta Cryst. C50, 362-364.

Acta Cryst. (1995). C51, 629-631

Triphenyltin Iodide

SEIK WENG NG

Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received 29 March 1994; accepted 1 November 1994)

Abstract

The geometry at the Sn atom in iodotriphenyltin, $[SnI(C_6H_5)_3]$, is distorted tetrahedral.

Comment

The title structure completes the series of triphenyltin halide structures. Triphenyltin fluoride forms a polymeric chain structure [Sn-F 2.1458(3)Å] in which the five-coordinate Sn atom shows trigonal bipyramidal coordination (Tudela, Gutierrez-Puebla & Monge, 1992). Both triphenyltin chloride [Sn-Cl 2.354(1) and 2.356(1)Å] (Tse, Lee & Gabe, 1986) and triphenyltin bromide [Sn-Br 2.495(2)Å] (Preut & Huber, 1979) adopt monomeric tetrahedral configurations. The iodide